import sklearn from sklearn import linear_model, tree # 普通最小二乘法 reg = linear_model.LinearRegression() reg.fit([[0, 0], [1, 1], [2, 2]], [0, 1, 2]) result = reg.predict([[3, 1]]) print(reg.coef_) print(result) # 贝叶斯岭回归 X = [[0., 0.], [1., 1.], [2., 2.], [3., 3.]] Y = [0., 1., 2., 3.] reg = linear_model.BayesianRidge() reg.fit(X, Y) result = reg.predict([[1, 0]]) print(reg.coef_) print(result) # 决策树分类 X = [[0, 0], [1, 1]] Y = [0, 1] clf = tree.DecisionTreeClassifier() clf = clf.fit(X, Y) result = clf.predict([[10., 11.]]) print(result) print(clf.predict_proba([[10., 11.]])) # 决策树回归 X = [[0, 0], [2, 2]] Y = [1.5, 6.5] clf = tree.DecisionTreeRegressor() clf = clf.fit(X, Y) result = clf.predict([[1, 2]]) print(result)